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We consider small perturbations of a simple completely integrable system with many
degrees of freedom: a collection of independent one-degree-of-freedom oscillators (in
the perturbed system the individual oscillators are no longer independent). We show
that the long-time behavior of such a system, even in the case of purely deterministic
perturbations, should, in general, be described as a stochastic process. The limiting
stochastic process is a Markov process on an open book space corresponding to the
collection of first integrals of the non-perturbed system.
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1. INTRODUCTION

Let us consider a system of n independent one-degree-of-freedom oscillators
described by

q̈i = −Vi (qi ), qi ∈ R
1, i = 1, . . . , n. (1.1)

Denote by Hi (qi , pi ) the Hamiltonian of the i-th oscillator: Hi (qi , pi ) =
p2

i

2 + Vi (qi ). We assume that the Hamiltonians Hi (q, p) are generic: each of them
has a finite number of critical points, which are non-degenerate, not more than
one for each connected component of a level set {(q, p) : Hi (q, p) = const};
and lim|q|→∞ Vi (q) = ∞. Let xi = (qi , pi ) ∈ R

2, x = (x1, . . . , xn), H(x) =
H(x1, . . . , xn) = ∑n

i=1 Hi (xi ). The system (1.1) can be written in the form

Ẋ(t) = ∇H (X(t)) , (1.2)
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where ∇H(x) is the skew gradient of H(x). The Hamiltonian system
(1.2) is, of course, a completely integrable one with n first integrals
H1(q1, p1), . . . , Hn(qn, pn).

Consider now a deterministic perturbation of system (1.2):

˙̃X
ε
(t) = ∇H

(
X̃

ε
(t)
)+ εβ

(
X̃

ε
(t)
)
.

A system described by such an equation can be called a system of weakly
coupled oscillators. We don’t assume that the perturbed system is again a Hamil-
tonian one. For instance, a small friction in the oscillators is a typical example of
perturbations which we are interested in. See example in Sec. 7. It is clear that
significant deviations of X̃

ε
(t) from X(t) occur in time intervals of order of ε−1, so

it is convenient to change the time scale and consider Xε(t) = X̃
ε
(t/ε) satisfying

the equation

Ẋ
ε
(t) = 1

ε
∇H (Xε(t)) + β (Xε(t)) . (1.3)

The dynamics described by (1.3) has two components: the fast one which is,
actually, the motion along the non-perturbed trajectories, and slow motion “across”
the trajectories. The slow component, in the case of the Hamiltonians Hi (xi ) having
one minimum each, can be described by the values of Hi (X ε

i (t)), i = 1, . . . , n. In
the general situation of the Hamiltonians having several critical points, to describe
the slow component we consider, for every i = 1, . . . , n, the graph �i obtained by
identifying all points of the plane R

2 belonging to the same connected component
of level sets {x : Hi (x) = const} (see Refs. 2–4). It was shown in these papers that
in the case of n = 1 such a graph is the natural phase space on which we should
consider the slow motion. For n > 1, if the two-dimensional components βi of
the perturbation vector β(x) depend on the whole x = (x1, . . . , xn) rather than
on xi only, we cannot consider the oscillators separately. The phase space for the
slow motion should be � = �1 × �2 × · · · × �n . This � is what is called an open
book, having finitely many n-dimensional pages γ j , and a binding B consisting
of pieces of smaller dimensions Bn−1, Bn−2, . . . , B1, B0.

Let Yi (x) be the identification mapping R
2 �→ �i corresponding to the

Hamiltonian Hi (x); let us define Y(x) = Y(x1, . . . , xn) = (Y1(x1), . . . ,Yn(xn))
∈ �. The slow component of the solution of (1.3) is, by definition, Y ε(t) =
Y (Xε(t)).

As an example, we consider in Sec. 7 a system of two oscillators (Fig. 1).
There, the open book consists of three two-dimensional pages and the binding
(Fig. 2). One can see in that example that the limiting slow motion, which is a
stochastic process on the open book with stochasticity concentrated on the one-
dimensional binding, can be described in a rather explicit form.

The main goal of this paper is to study the limiting behavior of the slow
motion Y ε(t) as ε ↓ 0. In the simplest situation of one degree of freedom and
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the Hamiltonian without saddle points Y ε(t) = H (X ε(t)) converges, uniformly
in every finite time interval, to an averaged motion Y (t) being the solution of a

certain equation Ẏ (t) = b(Y (t)), Y (0) = H (X ε(0)). In the case of many degrees
of freedom, even in a region where the Hamiltonians have no critical points, this
is not the case. One should, as it is well known, introduce the condition that the set
of resonance tori is small in some sense (see Ref. 7 and references therein), and
even then convergence will take place only in the sense of convergence in measure
(with respect to the Lebesgue measure in the space of initial conditions). If the
Hamiltonians have saddle points, it can be seen even in the case of one degree of
freedom that the slow component Y ε(t) = Y(X ε(t)) may have no limit as ε ↓ 0
(see, for example, Ref. 2). As it follows from Refs. 1, 8, the problem, in the case of
no critical points, can be “regularized” by adding small random perturbation to the
initial point. In the case of saddle points present, such a regularization, generally,
is not sufficient even for systems with one degree of freedom (see Ref. 2): if the
number of saddle points of the Hamiltonian is greater than 1, the limit may not exist.

In more detail: Let X ε,δ(t) be the solution of Ẋ
ε,δ

(t) = 1
ε
∇ H (X ε,δ(t)) + β(X ε,δ(t))

with the randomly perturbed initial condition X ε,δ(0) = x + δ · ξ , where the two-
dimensional random variable ξ is, say, uniformly distributed in the unit circle.
Then the slow component Y ε,δ(t) may have no limit as first ε and then δ go to zero
(such a double limit does exist for systems with at most one saddle point).

It was shown in Ref. 2 that for systems with one degree of freedom one
can regularize the problem by adding a stochastic perturbation not to the initial
point but rather to the right-hand side of the equation. We are going to do this for
n-degrees-of-freedom systems. Let us replace (1.3) by the equation

Ẋ
ε,�

(t) = 1

ε
∇H (Xε,�(t)) + β (Xε,�(t)) + √

�σ Ẇ (t), (1.4)

where W (t) is a 2n-dimensional Wiener process, and σ a 2n × 2n matrix having
2 × 2 nonzero matrices σi = (σi ; jk)2

j,k=1 on the diagonal, and 0 elsewhere (for
simplicity’s sake, we don’t consider matrices depending on x; if β(x) ≡ 0, the
components X ε,�

i (t) of Xε,�(t) are independent). The slow component Y ε,�(t) =
Y(Xε,�(t)) of the diffusion process described by the equation (1.4) is a continuous
stochastic process (generally, not a Markov one) on the open book �. Under
some natural additional assumptions, we show that, as ε ↓ 0, the process Y ε,�(t)
converges weakly to a diffusion process Y

�
(t) on �. We evaluate the generator

of Y
�
(t), which is described as certain differential operators on n-dimensional

pages of our open book, plus some appropriate gluing conditions at its binding.

Then we find the weak limit Y
0
(t) of the processes Y

�
(t) as � ↓ 0. It turns out

that this limit exists; being the limit of Markov processes Y
�
(t), it is quite natural

for Y
0
(t) to be also a Markov one. Inside each n-dimensional page γ j of �,

Y
0
(t) is a deterministic motion described as the solution of a differential equation
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with coefficients β( y) obtained by averaging βi (x1, . . . , xn) · ∇Hi (xi ) over the
set Y−1( y) (which is a connected component of a level set {x = (x1, . . . , xn) :
H1(x1) = const1, . . . , Hn(xn) = constn}). At the binding B of the open book �,

the process Y
0
(t) displays a stochastic behavior: if Y

0
(t) comes to a point y

belonging to the binding, it goes without any delay to one of the pages meeting at
the part of the binding containing this point, to each page with its own probability

(depending on the point y ∈ B). (The limiting process Y
0
(t) cannot go back to

the page γ j from which it came to the binding at or near the point y at which it
has come to the binding, since the velocity β( y) is directed from the page γ j to
the binding).

It turns out that the limiting process Y
0
(t) is independent of the choice

of the matrix σ (taken within the class we described above). This means that
the stochasticity of the limiting slow motion is, actually, an intrinsic property
of the deterministic system (1.3) with � = 0. The stochastic term

√
�σ Ẇ (t) is

used just for regularization of the deterministic problem. The real reason for this
stochasticity is instability of saddle points of the Hamiltonian.

Our main results will be formulated: that about the limit as ε ↓ 0 for positive
�, in Sec. 5 (the preparatory work being done in Secs. 3 and 4); that about the limit
as � ↓ 0, at the end of Sec. 6. An example will be considered in Sec. 7.

2. NOTATIONS

What was written above was to explain what we are planning to do in the
simplest way; in this section, we are going to describe a slightly more general class
of systems that can be handled the same way, and introduce notations.

Instead of denoting the two coordinates of a point x in the plane with q, p,
we are going to denote them ξ1, ξ2 (this is more convenient because then we can
write sums

∑2
i=1); we’ll no longer assume that the Hamiltonian Hi (x) has the form

p2

2 + Vk(q): it will be an arbitrary smooth function such that lim|x |→∞ Hi (x) = ∞.
The skew gradient has the form ∇Hi (x) = ( ∂ Hi

∂ξ2
,− ∂ Hi

∂ξ1
). We’ll assume that, for

sufficiently large |x |, Hi (x) ≥ A1|x |2, A2|x | ≤ |∇Hi (x)| ≤ A3|x |, and the matrix

of the second derivatives ( ∂2 Hi (x)
∂ξ j ∂ξr

) j, r=1,2 is bounded and uniformly positive definite
for large |x |.

In the notations already introduced, Yi : R
2 �→ �i is the identification

mapping corresponding to the i-th Hamiltonian. The graph �i consists of vertices
Oik (each vertex is the image under the mapping Yi of a critical point xik of the
Hamiltonian Hi ) and edges Iil . The fact of an edge Iil having a vertex Oik as
one of its ends will be noted as Iil ∼ Oik . A point y ∈ �i will be characterized
by two coordinates: y = (l, H ), where l is the number of the edge Il of the graph



Long-Time Behavior of Weakly Coupled Oscillators 1315

containing y, and H = Hi (y). For y = (l, H ) ∈ �i , the notation y → ∞ will
mean that H → ∞ (this may happen only along one edge Iil of the graph).

A vertex Oik of the graph �i will be called internal if the critical point xik

belonging to Y−1
i (Oik) is a saddle; and external if this critical point is a local

extremum. Exactly one edge Iil enters every external vertex; and exactly three
edges meet at every internal one: Iil1 , Iil2 , Iil3 ∼ Oik . So an internal vertex has three
sets of coordinates: Oik = (l1, Hik) = (l2, Hik) = (l3, Hik), where Hik = Hi (Oik).

For shortness, Ci (y), y ∈ �i , will denote the inverse image Y−1
i (y). The

same kind of notation, Ci (x), will be used for x ∈ R
2: Ci (x) = Y−1

i (Yi (x)) is
the connected component of a level set of the Hamiltonian Hi containing the point
x .

For 1 ≤ i ≤ n and y ∈ �i not being a vertex of this graph we take

Ti (y) =
∮

Ci (y)

1

|∇Hi (x)|	(dx), (2.1)

where 	(dx) denotes integration with respect to the curve length. This is the period
of the rotation of the system Ẋ (t) = ∇ Hi (X (t)) along the curve Ci (y). The same
notation Ti (x) = Ti (Yi (x)) will be used for points x ∈ R

2.
For y ∈ �i not being a vertex we define a measure µi

y concentrated on Ci (y)
by

µi
y(A) = Ti (y)−1

∮

Ci (y)

IA(x)

|∇Hi (x)|	(dx),

where IA(x) is the indicator function of A ⊂ Ci (y); and if y is a vertex Oik ∈ �i ,
we define µi

y as a unit mass concentrated at the equilibrium point xik ∈ Y−1
i

(Oik).
The measure µi

y clearly depends on y ∈ �i in a weakly continuous way.
Now we define

ai ; jr =
2∑

t=1

σi ; j tσi ;r t , 1 ≤ j, r ≤ 2;

ai (y) =
∮

Ci (y)

2∑

j,r=1

ai ; jr · ∂ Hi

∂ξ j

∂ Hi

∂ξr
µi

y(dx),

b
�

i0(y) = �

2

∮

Ci (y)

2∑

j,r=1

ai ; jr · ∂2 Hi (x)

∂ξ j∂ξr
µi

yi
(dx)
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for y ∈ �i ; and for y = (y1, . . . , yn) ∈ � we take b
�

i ( y) = b
�

i0(yi ) + β i ( y),
where

β i ( y) =
∮

C1(y1)

. . .

∮

Cn (yn )

βi (x1, . . . , xn) · ∇Hi (xi )µ
1
y1

(dx1) . . . µn
yn

(dxn). (2.2)

Let Oik be an interior vertex of the graph �i ; we have Oik = (l1, Hik) =
(l2, Hik) = (l3, Hik), where Hik = Hi (Oik), and l1, l2, l3 are the numbers of the
edges Iils , s = 1, 2, 3, meeting at Oik . Let us define Ci ; kls as the part of the
curve Ci (Oik) that forms a part of the boundary of Y−1

i (Iils \ {Oik}). One of Ci ; kls

coincides with the whole curve Ci (Oik), consisting of two “loops”; and the other
two Ci ;kls are these loops taken separately.

We define

αi ; kls =
∮

Ci ; kls

2∑

j,r=1

ai ; jr ·
∂ Hi

∂ξ j

∂ Hi

∂ξr

|∇Hi (x)| 	(dx), s = 1, 2, 3. (2.3)

Now for y = (l, H ) being an interior point of an edge Iil ⊆ �i , and for every
function f (y) = f (l, H ) that is twice continuously differentiable in H , we take

L
�

i0 f (y) = �

2
ai (y) · d2 f (l, H )

d H 2
+ b

�

i0(y) · d f (l, H )

d H
.

A function f (y) = f (l, H ) on �i is said to belong to Di = D�
i if the fol-

lowing requirements are satisfied: it is continuous on �i and has a finite limit as
y → ∞ (in other words: it is continuous on �i ∪ {∞}); it is twice continuously
differentiable (with respect to H ) on the interior parts of the edges Iil of the graph;
for every vertex Oik = (l, Hik) of the graph and every edge Iil ∼ Oik a finite limit

lim
H→Hik

d f (l,H )
d H exists; finite limits

lim
y→Oik

L
�

i0 f (y) (2.4)

exist for all vertices Oik , and a finite limit

lim
y→∞ L

�

i0 f (y) (2.5)

too; and f satisfies the gluing conditions

3∑

s=1

(±αi ; kls ) · lim
H→Hik

d f (ls, H )

d H
= 0 (2.6)

at every interior vertex Oik = (l1, Hik) = (l2, Hik) = (l3, Hik), where the sign “+”
is taken if the edge Ii ;ls consists of points (ls, H ) with H ≥ Hik , and “−” if H ≤ Hik

for (ls, H ) ∈ Iil .



Long-Time Behavior of Weakly Coupled Oscillators 1317

For f ∈ Di , we define the value of the function L
�

i0 f at a vertex Oik as the
limit (2.4).

Proposition 2.1. (see Refs. 3 and 4) For every function u0 on �i belonging to Di

there exists a unique solution u(t, y) of the differential equation ∂u(t,y)
∂t = Li0u(t, y)

with initial condition u(0, y) = u0(y) such that u(t, •) ∈ Di for every t > 0.
The solution P

�

i0;y of the martingale problem corresponding to the operator

L
�

i0 with domain Di with initial distribution concentrated at an arbitrary point
y ∈ �i exists and is unique.

As a matter of fact, the probability measure solving this problem, with
y = Yi (x), is the weak limit as ε ↓ 0 of the function-space distribution of the
random function Y ε,�

i0 (•) = Yi (X ε,�
i0 (•)), where X ε,�

i0 is the solution of the equa-
tion Ẋ ε,�

i0 (t) = 1
ε
∇Hi (X ε,�

i0 (t)) + √
�σi Ẇi (t), X ε,�

i0 (0) = x , with the drift coeffi-
cient βi ≡ 0 (see Refs. 3 and 4).

Now let us define the differential operator L
�

on the open book �.
By definition, a function f ( y) = f (y1, . . . , yn) = f (l1, H1, . . . , ln, Hn) on

� = �1 × · · · × �n belongs to D = D� if the following conditions are satisfied:
f is continuous on (�1 ∪ {∞}) × · · · × (�n ∪ {∞});
f has first and second continuous partial derivatives in Hi for yi = (li , Hi ) in

the interior parts of edges Iili of the graph �i , i = 1, . . . , n (so that we can apply
the operator Li0 to f in its argument yi );

For every vertex Oik = (l, Hik) ∈ �i , every edge of this graph Iil ∼ Oik , and
arbitrary points y j0 ∈ � j ∪ {∞}, j �= i , a finite limit

lim
Hi →Hik ,y j →y j0, j �=i

∂ f (y1, . . . , l, Hi , . . . , yn)

∂ Hi

(with yi approaching Oik along the edge Iil ) exists;
finite limits

lim
yi →Oik ,y j →y j0, j �=i

L
�

i0 f (y1, . . . , yn)

exist for all vertices Oik ∈ �i and all y j0 ∈ � j ∪ {∞}, j �= i , where the operator
L

�

i0 is applied to the function f in its i-th argument;
f satisfies the gluing conditions

3∑

s=1

(±αi ;ks) · lim
Hi →Hik ,y j →y j0, j �=i

∂ f (y1, . . . , ls, Hi , . . . , yn)

∂ Hi
= 0 (2.7)

for every interior vertex Oik = (l1, Hik) = (l2, Hik) = (l3, Hik) of the graph �i ,
i = 1, . . . , n, and all points y j ∈ � j , j �= i .
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We’ll be also considering a smaller domain D0 = D�
0 consisting of all lin-

ear combinations of functions f having the form f (y1, . . . , yn) = f1(y1) · . . . ·
fn(yn), where fi ∈ Di , i = 1, . . . , n.

Now we define the operator L
�
.

For a function f ∈ D we define the function L
�

f ( y), y ∈ �, by

L
�

f ( y) = L
�

f (y1, . . . , yn) =
n∑

i=1

b
�

i ( y) · ∂ f

∂ Hi
+ �

2

∑

i=1

ai (yi ) · ∂2 f

∂ H 2
i

,

where the summands are replaced by the corresponding limits for yi being vertices
of �i . The limits at vertices Oik ∈ �i exist because they do for the operators L

�

i0,
and the coefficients β i ( y) (defined by (2.2)) in the difference of the operators
L

� −∑n
i=1 L

�

i0 have zero limits at vertices, this being because the measure µi
Oik

is concentrated at the critical point xik ∈ Y−1
i (Oik), and ∇Hi (xik) = 0.

Considering the averaged operator L
�

on the domain D is more natural;
however for our purposes and methods of proof we need it only on a much smaller
domain D0.

3. EXISTENCE AND UNIQUENESS OF THE SOLUTION

OF THE MARTINGALE PROBLEM

In this section and Secs. 4 and 5, we are going to speak about limit passage
as ε ↓ 0 and about the limiting stochastic process; the parameter � is fixed. So we
are going to drop the mention of this parameter in our notations, and write the
diffusion coefficients without the factor �.

As it is explained in Refs. 5, 6, several things are needed to establish weak
convergence of the function-space distribution Pε

x of the random function Y ε(•) =
Y (Xε(•)) with respect to the probability measure Pε

x to that of the Markov
process Y (•) with generating operator L with respect to the probability measure
PY(x):

• “tightness” of the family of measures Pε
x ;

• convergence

Eε
x

∫ ∞

0
e−λt

[
λ f (Y ε(t)) − L f (Y ε(t))

]
dt → f (Y(x)) (3.1)

as ε ↓ 0 for every function f belonging to a set DL and for every positive
λ; and

• uniqueness of the solution of the martingale problem corresponding to the
operator L considered on the domain DL .
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The tightness is pretty easy to establish—we are not going to stop at it; the
problems of uniqueness and of convergence (3.1) are considered independently
from one another. We are going to consider the uniqueness first.

This is done in pretty much the same way as in Ref. 6.
Probably the most natural way of proving uniqueness of the solution of the

martingale problem corresponding to the operator L on � with domain DL is
proving existence of the solution of the problem

∂u(t, y)

∂t
= Lu(t, y), u(0, y) = u0( y), u(t, •) ∈ DL, t > 0, (3.2)

for a dense set of initial values u0. This is essentially a version of Theorem 6.3.2
of Ref. 9 freed from the reference to the space of infinitely differentiable function.
But this is an equation on an open book, not on merely a multidimensional region,
and not one on a one-dimensional structure (graph); in addition the coefficients
of the operator L degenerate at the binding of the open book; and we don’t know
how to find solutions of this equation, even if we take DL = D, the larger of the
two versions of domain. So we apply an oblique method.

If we take β(x) ≡ 0 and consider the corresponding operator L0, we have:
L0 f ( y) = ∑n

i=1 Li0 f (y1, . . . , yn), where the operator Li0 is applied to the func-
tion in its i-th argument. As for solutions of the martingale problem, clearly
the probability measure P0; y = P10;y1 × . . . × Pn0;yn (the joint distribution of n
independent solutions of the corresponding martingale problems) is a solution
of the martingale problem corresponding to the operator L0 (with the domain
DL0

= D0); and this establishes the existence.
Is this solution unique?
Let us take u0( y) = u0(y1, . . . , yn) = ∏n

i=1 ui0(yi ), u0i ∈ Di . Let ui (t, y),
t ≥ 0, y ∈ �i , be the solution of the problem ∂ui (t,y)

∂t = Li0ui (t, y), ui (0, y) =
ui0(y), ui (t, •) ∈ Di , t > 0. Then the function u(t, y) = ∏n

i=1 ui (t, yi ) clearly
solves the problem (3.2) with L = L0 and DL = D0. Since linear combina-
tions of functions belonging to D0 form a dense set in the space of contin-
uous functions, the existence and uniqueness problem is solved for β(x) ≡ 0,
β( y) = (

β1( y), . . . , βn( y)
) ≡ 0.

It turns out that we can change the drift coefficients in the generating operator
by making an absolutely continuous change of the probability measure.

Proposition 3.1. Let e( y) = (e1( y), . . . , en( y)) be a measurable function on
� such that ei ( y) = 0 for yi being a vertex of �i , and the functions ai (yi ) ·
ei ( y)2 are bounded. Let C[0,∞) be the space of continuous functions y(t) =
(y1(t), . . . ,yn(t)), 0 ≤ t < ∞, yi (t) ∈ �i . Let us introduce the random functions

mi (t) = Hi (yi (t)) −
∫ t

0
bi (y(s)) ds. (3.3)
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Suppose P is a solution of the martingale problem associated with the operator
L with domain D.

Then the random functions (3.3) are square-integrable martingales with re-
spect to P, and stochastic integrals

∫ t
0 ei (y(s)) dmi (s) are defined. Take

π [0, t] = exp
{ n∑

i=1

∫ t

0
ei (y(s)) dmi (s) − 1

2

n∑

i=1

∫ t

0
ai (yi (s)) ei (y(s))2 ds

}
,

and define the probability measure P̂ by P̂(B) = E(B; π [0, t]) (E(B; ) being the
expectation corresponding to the probability measure P taken over the set B) for
events B belonging to the algebra

⋃
0≤t<∞ σ {y(s), 0 ≤ s ≤ t} and by extension

on the σ -algebra generated by all random variables y(t), 0 ≤ t < ∞.
Then P̂ is a solution of the martingale problem corresponding to the linear

operator L̂ defined the same way as L, with the same coefficients ai (yi ) as L, with

b̂i ( y) = bi ( y) + ai (yi ) · ei ( y), and the same domain as L.

The proof is similar to that of Propositions 5.3 and 6.1 in Ref. 6.
Now we can take P = P0; y (the probability measure solving the martin-

gale problem associated with the operator L0) and ei ( y) = β i ( y)/ai (yi ) (re-
placing it with 0 when y is a vertex of the graph �i ). If the perturbing
drift function β(x) is bounded, the functions ai (yi ) · ei ( y)2 = β i ( y)2/ai (yi ), are
bounded, because for yi = (l, H ) close to an interior vertice Oik = (l, Hik), y =
(y1, . . . , yn) we have β i ( y) = O( 1∣

∣ln |H−Hik |
∣
∣ ), ai (yi ) ∼ const∣

∣ln |H−Hik |
∣
∣ ; near exterior

vertices β i ( y) = O(|H − Hik |1/2), ai (yi ) ∼ const · |H − Hik |; and as H → ∞,
we have β i ( y) = O(

√
H ), ai (yi ) ≥ const · H . So we can apply Proposition 3.1

and get the probability measure P̂ solving the martingale problem associated with
the operator L. This takes care of the existence problem.

For uniqueness, we apply the same Proposition with P = P y (a measure solv-
ing the martingale problem associated with L, with the initial distribution concen-
trated at the point y) and ei ( y) = −β i ( y)/ai (yi ); the probability measure P̂ solves
the martingale problem associated with the operator L0. From the uniqueness
of such a measure we deduce uniqueness for the martingale problem associated
with L.

4. CONVERGENCE AS ε ↓ 0. CASE OF REGIONS WITH THE

(n − 2)-DIMENSIONAL PART OF THE BINDING CUT OUT

We have introduced the notation Ti (x) for the period of the solution of
Ẋ (t) = Hi (X (t)) starting from the point x (see the paragraph containing formula
(2.1)). The corresponding frequency will be ωi (x) = 1/Ti (x).

Let us introduce our main restriction on these frequencies (cf. Ref. 5):



Long-Time Behavior of Weakly Coupled Oscillators 1321

Condition �: The set of points x = (x1, . . . , xn) ∈ R
2n for which the fre-

quencies ω1(x1), . . . , ωn(xn) are rationally dependent has zero Lebesgue measure.
Let τ be the time at which the process Y ε(t) leaves a region �0 ⊂ � (we are

not showing the dependence of τ on ε to avoid cumbersome notations). We are
going to prove that

Eε
x

[
e−λτ f (Y ε(τ )) +

∫ τ

0
e−λt

[
λ f (Y ε(t)) − L f (Y ε(t))

]
dt
]

→ f (Y(x))

(4.1)
as ε ↓ 0 for different classes of regions �0. Because of the uniqueness result that
we already have, (4.1) means that the distribution of the random function Y ε(•)
stopped at the time τ converges weakly to that of the process Y (•) stopped at the
time when it leaves �0: to express it shorter but less precisely, weak convergence
takes place before the time of leaving �0.

Proposition 4.1. Suppose that the Hamiltonians Hi are four times continuously
differentiable; for sufficiently large |x |, Hi (x) ≥ A1|x |2, A2|x | ≤ |∇Hi (x)| ≤
A3|x |, where Ai are positive constants, and the matrix of the second deriva-

tives ( ∂2 Hi (x)
∂ξ j ∂ξr

) j,r=1,2 is bounded and uniformly positive definite for large |x |; that

Condition � is satisfied; and that β(x) is bounded.
For every i = 1, . . . , n, let �i0 be a subedge of an edge Iili of the graph �i :

a subedge whose ends are interior points of Iili ; and let �0 = �10 × · · · × �n0.
Then for every f ∈ D and every λ > 0 (4.1) is satisfied, uniformly in x ∈

Y−1(�0).

Proof. In the region Y−1
i (�i0) ⊂ R

2 (which is homeomorphic to an
anulus) we introduce action-angle coordinates: Hi (x) and ϕi (x), the last
one changing in the unit circle, so that for Xε(t) = (X ε

1(t), . . . , X ε
n(t)) =

(H ε
1 (t), ϕε

1(t), . . . , H ε
n (t), ϕε

n(t)) we have dϕε
i (t)

dt = 1
ε
ωi (H ε

i (t)) + ci (Xε(t)) +
σ̃i (X ε

i (t))Ẇi (t). Then we apply Theorem 3 of Ref. 5 (the uniformity in x was not
included in the formulation of that theorem, but the proof is essentially the same).

The following result is some sort of cross between the main result of Ref. 6
and that of Ref. 5:

Proposition 4.2. Let the conditions imposed on the Hamiltonians Hi and on
β(x) in Proposition 4.1 be satisfied. Let all �i0 but one be subedges as described
in Proposition 4.1, and the remaining one �i0 is just a compact subgraph of �i .

Then for every f ∈ D and every λ > 0 (4.1) is satisfied, uniformly in x ∈
Y−1(�0),�0 = �10 × · · · × �n0.

The proof is a combination of those in Ref. 6 and in Ref. 5: the sequence of
stopping times 0 = τ0 ≤ σ1 ≤ τ1 ≤ σ2 ≤ · · · is constructed similarly to Ref. 6; we
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handle the time intervals from τi to σi+1 in a way similar to that of Ref. 6 (taking
the gluing conditions into account), and for the time intervals from σi to τi , we
apply Proposition 4.1.

Proposition 4.3. Let the conditions imposed on the Hamiltonians Hi and on
β(x) in Proposition 4.1 be satisfied. For small d > 0, let �i (≤ d) be the union of
closed d-neighborhoods of all vertices Oik ∈ �i :

�i (≤ d) =
⋃

Oik∈�i ,Iil∼Oik

{(l, H ) : |H − Hi (Oik)| ≤ d};

let us define �(d) by

�(d) = � \
⋃

1≤i< j≤n

�1 × · · · × �i−1 × �i (≤ d) × �i+1 × · · · × � j−1

×� j (≤ d) × � j+1 × · · · × �n (4.2)

(the open book � from which some neighborhood of the (n − 2)-dimensional part
of the binding is deleted);

�0 = { y = (y1, . . . , yn) ∈ �(d) : Hi (yi ) < R, 1 ≤ i ≤ n}.
Then for every f ∈ D and every λ > 0 (4.1) is satisfied, uniformly in x ∈

Y−1(�0).

Limit passage as R → ∞ yields the same for �0 = �(d), uniformly in x
changing in every compact subset of Y−1 (�(d)).

Proof of Proposition 4.3. Choose a positive δ < d. Let us define τ 0 = 0;

τ 1 = min{t ≥ 0 : one of Y ε
j (t) ∈ � j (≤ d), or Y ε(t) /∈ �0};

and for i > 0 we define τ i+1 as being equal to τ i if Y ε(τ i ) /∈ �0, and by

τ i+1 = min{t ≥ τ i : one of Y ε
j (t) ∈ � j (≤ δ), 1 ≤ j ≤ n, j �= k, or Y ε(t) /∈ �0}

if Y ε
k (τ i ) ∈ �k(≤ δ).

Note that there can be only one k such that Y ε
k (τ i ) ∈ �k(≤ δ), be-

cause if both this and Y ε
j (τ i ) ∈ � j (≤ δ), j �= k, held, then Y ε(τ i ) would have

been deep inside �1 × · · · × �k−1 × �k(≤ d) × �k+1 × · · · × � j−1 × � j (≤ d) ×
� j+1 × · · · × �n, and the time τ i would be after leaving �0.

It is clear that all τ i , starting with some i , are equal to τ .

We have:

Eε
x

[
e−λτ f (Y ε(τ )) +

∫ τ

0
e−λt

[
λ f (Y ε(t)) + L f (Y ε(t))

]
dt
]

− f (Y(x))
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=
∞∑

i=0

Eε
x

[
e−λτ i+1 f (Y ε(τ i+1)) +

∫ τ i+1

τ i

e−λt
[
λ f (Y ε(t)) + L f (Y ε(t))

]
dt

− e−λτ i f (Y ε(τ i ))
]
. (4.3)

The zeroth summand converges to 0, uniformly in x = (x1, . . . , xn), by
Proposition 4.1, where we take as �i0 the edge of the graph �i containing the
point Yi (xi ) with δ-neighborhoods of its ends deleted. To the i-th summand in
(4.3), i > 1, we apply the strong Markov property with respect to τ i ; and we get that
it is equal to Eε

xψ
ε (Xε(τ i )) , where ψε(x′) = ψε(x ′

1, . . . , x ′
n) = 0 if Y(x′) /∈ �0,

and

ψε(x′) = Eε
x′

[
e−λσ k f (Y ε(σ k)) +

∫ σ k

0

[
λ f (Y ε(t)) + L f (Y ε(t))

]
dt
]

− f
(
Y(x′)

)

if Yk(x ′
k) ∈ �k(≤ δ), where

σ k = min{t ≥ 0 : one of Y ε
j (t) ∈ � j (≤ δ), j �= k, or Y ε(t) /∈ �0}.

By Proposition 4.2, we have that ψε(x′) → 0 as ε ↓ 0, uniformly in x′ (as
�k0 we take {y ∈ �k : Hk(y) ≤ R}, and as � j0, j �= k, the edge of the graph � j

containing the point Y j (x
′
j ) with δ-neighborhoods of its ends deleted).

To conclude the proof, we show that the expectation Eε
x

∑
i :τ i <τ e−λτ i is

uniformly bounded for small positive ε; and this is done taking into account that
between the times τ i and τ i+1 < τ the process Y ε(t) has to travel at least the
positive distance d − δ.

So we have proved what we needed before the time of coming too close to
the (n − 2)-dimensional part of the binding. What remains to be checked is that
we come too close to it only with a very small probability. This will be done in the
next section.

5. INACCESSIBILITY OF THE (n − 2)-DIMENSIONAL

PART OF THE BINDING

If Oik is an exterior vertex of the graph �i , it is clear that the set { y =
(y1, . . . , yn) : yi = Oik} is inaccessible for the limiting process Y (t) starting from
any point that does not belong to this set. An interior vertex can be reached in finite
time; but if Oik is an interior vertex of the graph �i , and O jr of � j , j �= i , it turns
out that the set { y = (y1, . . . , yn) : yi = Oik, y j = O jr } (an (n − 2)-dimensional
part of the binding of the open book �) is inaccessible for Y (t) if this process
starts outside this set.

This statement is similar to that of inaccessibility of a single point for a two-
dimensional Wiener process starting at a different point; and to prove it we need
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to find the asymptotics of the diffusion coefficients ai (yi ) of the process Y (t) as
yi approaches a vertex.

Proposition 5.1. Let the Hamiltonian Hi be three times continuously differen-
tiable and generic as described in the beginning of the paper. Let Oik = (l, Hik)
be an interior vertex of the graph �i , and let Iil be an edge of �i whose one end
is Oik .

Then there exist constants Ai
kl > 0 and Bi

kl such that

ai (l, H ) = Ai
kl∣

∣
∣ln |H − Hik |

∣
∣
∣

+ Bi
kl

∣
∣
∣ln |H − Hik |

∣
∣
∣
2

+ O

⎛

⎜
⎝

1
∣
∣
∣ln |H − Hik |

∣
∣
∣
2
· √|H − Hik |

⎞

⎟
⎠

(5.1)

as H → Hik.

Proof. Let us denote H − Hik = d. By the Morse Lemma, we can introduce
new coordinates α1, α2 instead of ξ1, ξ2 in a neighborhood of the saddle point
xik ∈ Y−1

i (Oik) so that in this neighborhood Hi (x) = Hik + α1 · α2. In this neigh-
borhood the curve Ci (l, Hik + d) is described as {(α1, α2) : α1α2 = d}, d �= 0, and
we have, for the length measure on the curve:

	(dx)

|∇Hi (x)| = A(α1, d/α1)
|dα1|
|α1| = A(d/α2, α2)

|dα2|
|α2| ,

where A(α1, α2) is a positive continuously differentiable function.
For y = (l, H ) ∈ Iil we have either H ≥ Hik , or H ≤ Hik . For definiteness,

let it be H ≥ Hik (and so d > 0).
For small a > 0 and d > 0, let us denote Ci (l, Hik + d; < a) the part of

the curve Ci (l, Hik + d) lying in the neighborhood mentioned above, with |α1|,
|α2| < a; Ci (l, Hik + d; > a) will denote the remaining part of Ci (l, Hik + d).

Let us prove that there exist a positive constant Ci
kl and a constant Di

kl such
that

Ti (l, Hik + d) = Ci
kl · ∣∣ln |d|∣∣+ Di

kl + O(
√

|d|) (5.2)

as d → 0.
The integral (2.1) defining Ti (l, H ) is equal to the integral over Ci (l, Hik +

d; > a) plus that over Ci (l, Hik + d; < a).
The first integral is taken over the part of the curve that is far from the

equilibrium point, the integrand is smooth, the curve and its ends depend smoothly
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on d; so it is a continuously differentiable function of d, and
∫

Ci (l,Hik+d;>a)

1

|∇Hi (x)| 	(dx) =
∫

Ci ;kl (>a)

1

|∇Hi (x)| 	(dx) + O(d),

where Ci ;kl(> a) is the part of Ci ;kl with |α1|, |α2| > a.
The integral over Ci (l, Hik + d; < a), d > 0, is equal either to

∫ a
d/a A(α1, d/α1) dα1

α1
, or to

∫ −d/a
−a A(α1, d/α1) dα1

|α1| , or to the sum of these two inte-
grals (the first one for one edge of the graph adjacent to Oik , the second integral
for another one, and the sum for the third one). Let us find the asymptotics of∫ a

d/a A(α1, d/α1) dα1
α1

.
Changing the variable in some part of the integration range, we write this

integral as
∫ a

√
d

A(α1, d/α1)

α1
dα1 +

∫ a

√
d

A(d/α2, α2)

α2
dα2. (5.3)

The first integral here is equal to
∫ a

√
d

A(0, 0)

α1
dα1 +

∫ a

0

A(α1, 0) − A(0, 0)

α1
dα1 −

∫ √
d

0

A(α1, 0) − A(0, 0)

α1
dα1

+
∫ a

√
d

A(α1, d/α1) − A(α1, 0)

α1
dα1.

The first integral here is equal to A(0, 0) · (ln a − 1
2 ln d); the second one

converges because the function A is smooth, and it is equal to some constant not
depending on d; the third integral is O(

√
d); and the fourth does not exceed in

absolute value
∫ a

√
d

const · d/α1

α1
dα1 = const · d ·

(
1√
d

− 1

a

)

= O
(√

d
)

.

So the first integral in (5.3) is equal to 1
2 A(0, 0) · | ln d| + A(0, 0) · ln a +

∫ a
0

A(α1,0)−A(0,0)
α1

dα1 + O(
√

d); and we deal with the second integral in (5.3) in a
similar way.

If the integral over Ci (l, Hik + d; < a), is equal to
∫ a

d/a A(α1, d/α1) dα1
α1

,

we get formula (5.2) with Ci
kl = A(0, 0) and Di

kl = ∫
Ci (l,Hik ;>a)

1
|∇Hi (x)|

	(dx) + 2 ln a + ∫ a
0

A(α1,0)−A(0,0)
α1

dα1 + ∫ a
0

A(0,α2)−A(0,0)
α2

dα2; for the two other
cases (and for d < 0), the expressions for the constants are different.

In a similar way we prove that

∮

Ci (l,Hik+d)

2∑

r,s=1
ai ;rs(x) · ∂ Hi

∂ξr

∂ Hi

∂ξs

|∇Hi (x)| 	(dx) =
∮

Ci ;kl

2∑

r,s=1
ai ;rs(x) · ∂ Hi

∂ξr

∂ Hi

∂ξs

|∇Hi (x)| 	(dx) + O(|d| ln |d|)
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as d → 0 (the integral in the right-hand side converges because Hi (x) has a critical
point at xik , and the value of this integral is positive). Together with (5.2), this
yields (5.1).

For simplicity of notations, we formulate our next Proposition for the first
two coordinates, denoting two interior vertices of �1, �2 with O1k , O2k with the
same k, and the edges meeting at them with Ii1, Ii2, Ii3, i = 1, 2.

Proposition 5.2. Suppose that

ai (l, H ) = Ai
kl∣

∣
∣ln |H − Hik |

∣
∣
∣

+ Bi
kl

∣
∣
∣ln |H − Hik |

∣
∣
∣
2

+ o

⎛

⎜
⎝

1
∣
∣
∣ln |H − Hik |

∣
∣
∣
2
· ln

∣
∣
∣ln |H − Hik |

∣
∣
∣

⎞

⎟
⎠

as H → Hik, i = 1, 2, l = 1, 2, 3; and bi ( y), i = 1, . . . , n, are bounded near the
points y with y1 = O1k, y2 = O2k .

Then the set { y : y1 = O1k, y2 = O2k} is inaccessible for the process Y (t)
corresponding to the operator L starting from points outside this set.

Proof. For further simplicity of notations, let us introduce new coordinates, de-
noted with the letter z, along the edges Iil ⊆ �i , i = 1, 2, l = 1, 2, 3, changing
between 0 and some ri ;kl , so that

ai (l, z) = 1
∣
∣ln |z|∣∣ + Ci

kl
∣
∣ln |z|∣∣2

+ o

(
1

∣
∣ln |z|∣∣2 · ln

∣
∣ln |z|∣∣

)

as z ↓ 0.
Let us define the following functions: for i = 1, 2, y = (l, z), l = 1, 2, 3,

hi (y) = hi (l, z) =
{

z2 · | ln z| + Di
kl z

2 for 0 < z ≤ ri ;kl,

0 for z = 0,

where Di
kl = 1 − Ci

kl ; for y1, y2 in some neighborhoods of O1k , O2k ,

u = u(y1, y2) = h1(y1) + h2(y2);

for y = (y1, y2, . . . , yn) we take

F( y) = f (u),

where f (u) is a twice continuously differentiable function.
Let us evaluate L f ( y).
We have for yi = (li , zi ), i = 1, 2, 1 ≤ li ≤ 3:

L f ( y) = f ′′(u) ·
2∑

i=1

ai (yi )

2
· h′

i (li , zi )
2 + f ′(u) ·

2∑

i=1

[ai (yi )

2
· h′′

i (li , zi )
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+ bi ( y) · h′
i (li , zi )

]
.

At the points at which f ′(u) �= 0 this can be written as

L f ( y) = − f ′(u) ·
{

− d

du
ln | f ′(u)| ·

2∑

i=1

ai

2
· (h′

i )
2 −

2∑

i=1

[
ai

2
· h′′

i + b
i · h′

i

]}

.

The function F does not belong to D0; however, if we approximate the
function f , together with its first and second derivatives, with polynomials fm ,
m = 1, 2, 3, . . ., and take Fm( y) = fm(u), we get the functions Fm that do belong
to D0. This is because Fm( y) is a linear combination of products of functions

of yi , i = 1, . . . , n; ∂ fm (u)
∂yi

∣
∣
∣

yi =0
= 0, i = 1, . . . , n, and the gluing conditions are

satisfied for every choice of coefficients αi ;kl .
Using this, we prove easily that F

(
Y (t)

)− ∫ t
0 LF

(
Y (s)

)
ds, t ≥ 0, is a

martingale with respect to each of the probabilities P y, y ∈ �.
Now let f (u) = ln ln | ln u| for ρ ≤ u ≤ R, where R and ρ ∈ (0, R) are suf-

ficiently small. Let us check that L F( y) < 0 for ρ ≤ u ≤ R.
Differentiating, we get:

f ′(u) = − 1

u · | ln u| · ln | ln u| ,
d

du
ln | f ′(u)| = − 1

u
+ 1

u · | ln u| + 1

u · | ln u| · ln | ln u|
for ρ < u < R,

h′
i (li , zi ) = 2zi · | ln zi | + (

2Di
kli

− 1
)
zi , h′′

i (li , zi ) = 2| ln zi | + (2Di
kli

− 3),

LF( y) = − f ′(u) ·
⎧
⎨

⎩
− d

du
ln | f ′(u)| · 1

2

2∑

i=1

⎡

⎣ 1

| ln zi | + Ci
kli

| ln zi |2

+ o

⎛

⎝ 1

| ln zi |2 · ln | ln zi |

⎞

⎠

⎤

⎦×
[
4z2

i · | ln zi |2 + 4
(

2Di
kli

− 1
)

z2
i | ln zi | + O(z2

i )
]

− 1

2

2∑

i=1

[
1

| ln zi | + Ci
kli

| ln zi |2 + o

(
1

| ln zi |2 · ln | ln zi |
)]

· [2| ln zi |

+ (2Di
kli

− 3)] −
2∑

i=1

bi ( y) · O(zi | ln zi |)
⎫
⎬

⎭
. (5.4)

Opening the brackets, we obtain that the first sum, together with the factor
1/2, is equal to 2

∑2
i=1[z2

i | ln zi | + (Ci
kli

+ 2Di
kli

− 1)z2
i + o((zi )2/ ln | ln zi |)]. Be-

cause of our choice of Di
kli

, we have Ci
kli

+ 2Di
kli

− 1 = Di
kli

, and this sum can

be replaced with 2u +∑2
i=1 o(z2

i / ln | ln zi |). Opening the brackets in the sec-
ond sum in (5.4), we get that this sum, with the factor (−1/2), is equal to
−2 +∑2

i=1 1/2| ln zi | +∑2
i=1 o( 1

| ln zi |·ln | ln zi | ); and the last sum in (5.4) also can
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be included in this o( ). So the quantity between the braces in formula (5.4) is
equal to

− 2

| ln u| +
2∑

i=1

1

2| ln zi | − 2

| ln u| · ln | ln u| + 1

u
·

2∑

i=1

o

(
z2

i

ln | ln zi |
)

+
2∑

i=1

o

(
1

| ln zi | · ln | ln zi |
)

. (5.5)

Since hi (li , zi ) ∼ z2
i · | ln zi |, we have:

(1 + o(1)) · (max
i

zi )
2 · | ln(max

i
zi )| ≤ u =

2∑

i=1

hi (li , zi )

≤ (2 + o(1)) · (max
i

zi )
2 · | ln(max

i
zi )|,

| ln u| = 2| ln(maxi zi )| − ln | ln(maxi zi )| + O(1), 2/| ln u| > 1/| ln(maxi zi )| for
sufficiently small u (or z1, z2); so −2/| ln u| +∑2

i=1 1/2| ln zi | ≤ −2/| ln u| +
1/| ln(maxi zi )| < 0. We have − 2

| ln u|·ln | ln u| ∼ − 1
| ln(maxi zi )|·ln | ln(maxi zi )| , and the last

two terms in the sum (5.5) are o( 1
| ln(maxi zi )|·ln | ln(maxi zi )| ).

So the expression (5.5), and with it LF( y), is negative for y such that ρ ≤
u ≤ R.

Let τ ρR be the first time that the process Y (t) leaves the set { y : ρ < u < R}.
Because LF( y) < 0 for y in this set, we get for such y

E yF
(
Y (τ ρR)

) ≤ F( y),

from which

P y

{
Y (τ ρR) ∈ { y : u = ρ}} ≤ F( y) − f (R)

f (ρ) − f (R)
= F( y) − ln ln | ln R|

ln ln | ln ρ| − ln ln | ln R| .

If we take (for fixed R) ρ small enough, we see that the probability for the
process Y (t) to reach a small neighborhood of the set { y : y1 = O1k, y2 = O2k}
before reaching the set { y : u = R} can be made arbitrarily small. Letting the
parameter ρ characterising the smallness of this neighborhood go to 0, we get that
the probability to reach the set { y : y1 = O1k, y2 = O2k} before the set { y : u = R}
is equal to 0.

After this, only little effort is needed to prove that the process Y (t) cannot
reach the (n − 2)-dimensional part

⋃
i �= j,Oik∈�i ,O jr ∈� j

{ y : yi = Oik, y j = O jr } of

the binding with positive probability (if the starting point Y (0) is not in this set).
Since the techniques we are using require such things as expectations of

eλτ f (Y ε(τ )) and the like, let us formulate the results in such terms:
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Proposition 5.3. For every point y ∈ � not belonging to the (n − 2)-dimensional
part of the binding Bn−2, for every λ > 0, and for every positive γ there exists a
positive d such that

E ye−λτ < γ,

where τ is the time at which the process Y (t) leaves the region �(d) defined by
(4.2); and that, for sufficiently small ε, for every x /∈ Y−1(Bn−2), for every λ > 0,
and for every positive γ there exists a positive d such that

Eε
ye−λτ ε

< γ,

where τ ε is the time at which the process Y ε(t) leaves �(d).

Combining this with the results of Secs. 3 and 4, we get

Theorem 1. Let the conditions imposed on the Hamiltonians Hi and on β(x)
in Proposition 4.1 be satisfied. Then for every point x such that Y(x) does not
belong to the (n − 2)-dimensional part of the binding Bn−2 (i.e. such that no two
coordinates of the point Y(x) ∈ � are vertices of the corresponding graphs) the
function-space distribution of Y ε(•) with respect to the probability Pε

x converges
weakly as ε ↓ 0 to that of Y (•) with respect to the probability PY(x).

Remark: It can be proved that the same is true for Y(x) ∈ Bn−2. The proof is
based on the facts that the process Y (t) starting from Bn−2 almost surely leaves
this set immediately, and does not return to it (see Propositions 5.1 and 5.2); and
for small ε, the process Y ε(t) starting in a small neigborhood of Y−1(Bn−2) leaves
this neighborhood very soon with probability very close to 1, and with probability
very close to 1 does not return to a smaller neighborhood for a very long time
(see Proposition 5.3).

6. VANISHING-NOISE ASYMPTOTICS

Now we resume our initial notations, with explicit mention of the noise
parameter �.

The diffusion process Y
�
(t) on the open book �, the weak limit of the

process Y ε,�(t) as ε ↓ 0, is governed, inside its pages, by the differential operator
L

�
introduced in Sec. 2, which can be rewritten in the form

L
�

f ( y) = L
�

f (y1, . . . , yn) =
n∑

i=1

1

Ti (yi )

[

Bi ( y)
∂ f

∂ Hi
+ �

2

∂

∂ Hi

(

Ai (yi )
∂ f

∂ Hi

)]

,
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where

Bi ( y) = 1
∏

1≤ j≤n, j �=i
Tj (y j )

∮

C1(y1)

· · ·
∮

Cn (yn )

βi (x) · ∇Hi (xi )
∏n

i=1 |∇Hi (xi )| 	(dx1) · · · 	(dxn),

(6.1)

Ai (yi ) =

∣
∣
∣
∣
∣
∣
∣

∫

Gi (yi )

div[ai∇Hi (x)] dx

∣
∣
∣
∣
∣
∣
∣

, ai = σiσ
∗
i ,

and Gi (yi ) is the region in R
2 bounded by the contour Ci (yi ).

The coefficients αi ;kls in the gluing conditions (2.6), (2.7), defined by formula
(2.3), also can be rewritten in the form

αi ;kls =

∣
∣
∣
∣
∣
∣
∣

∫

Gi ;kls

div[ai∇Hi (x)] dx

∣
∣
∣
∣
∣
∣
∣

,

where Gi ;kls are the regions enclosed by Ci ;kls . If the values of H − Hik for
y = (l3, H ) ∈ Iil3 have the sign opposite to that for y in the edges Iil1 , Iil2 , we have
αi ;kl3 = αi ;kl1 + αi ;kl2 .

Consider one more Markov process Y
0
(t) on �. Inside each n-dimensional

page γ j ⊂ �, this process is deterministic, being the solution of the differential
equation

˙
H

0
(t) = β

(
Y

0
(t)
)

=
(
β1

(
Y

0
(t)
)

, . . . , βn

(
Y

0
(t)
))

, (6.2)

where H
0
(t) = (H

0
1(t), . . . , H

0
n(t)) is the vector of second coordinates of the

components Y
0
i (t) of Y

0
(t): Y

0
(t) = (Y

0
1(t), . . . , Y

0
n(t)) = (l

0
1(t), H

0
1(t), . . . , l

0
n(t),

H
0
n(t)) (note that the numbers l

0
1(t), . . . , l

0
n(t), characterizing the page on which the

process Y
0

is at the time t , remain constant as long as it is in the same page). The
coefficients β i , defined by (2.2), can be rewritten in the form β i ( y) = 1

Ti (yi )
Bi ( y),

where Bi is given by (6.1).

Now we are going to describe what happens with Y
0
(t) at the binding. The

coefficient β i (y1, . . . , yn) is equal to 0 for yi being a vertex Oik of the graph �i ,

so there is a solution of (6.2) with Y
0
i (t) ≡ Oik ; but it turns out that sometimes the

solution is not unique.
Let us introduce the following functions πil (y1, . . . , yn), defined only for yi

being a vertex Oik = (l, Hik) of the graph �i , and the edge Iil ∼ Oik :

πil ( y) = πil (y1, . . . , yn)
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=
∮

C1(y1)

. . .

∮

Ci−1(yi−1)

∮

Ci ;kl

∮

Ci+1(yi+1)

. . .

∮

Cn (yn )

βi (x1, . . . , xn) · ∇Hi (xi )

|∇Hi (xi )|

×µ1
y1

(dx1) . . . µi−1
yi−1

(dxi−1)	(dxi )µ
i+1
yi+1

(dxi+1) . . . µn
yn

(dxn).

For yi = Oik being an exterior vertex, Ci ;kl consists of one point xik (an
extremum of the Hamiltonian Hi ), and we take πil (y1, . . . , yn) = 0; at an interior
vertex, three πil (y1, . . . , yn) are defined, corresponding to the three edges Iils , s =
1, 2, 3, meeting at Oik .

The coefficients πils can be rewritten in the form

πils ( y) = ±
∮

C1(y1)

· · ·
∮

Ci−1(yi−1)

∫∫

Gi ;kls

∮

Ci+1(yi+1)

· · ·
∮

Cn (yn )

diviβi (x1, . . . , xn) µ1
y1

(dx1)

× · · · µi−1
yi−1

(dxi−1)dxiµ
i+1
yi+1

(dxi+1) · · ·µn
yn

(dxn), (6.3)

where Gi ;kls is the region encircled by the curve Ci ;kls , and divi denotes the
divergence taken with respect to the two-dimensional variable xi (the sign + is
taken if the gradient ∇Hi is directed from the region Gi ;kls outside, and − in the
opposite case).

The coefficient β i (y1, . . . , yn), defined by formula (2.2), for yi not being a
vertex of the graph �i can be written in the form

β i (y1, . . . , yn)

= Ti (yi )
−1

∮

C1(y1)

. . .

∮

Ci−1(yi−1)

∮

Ci (yi )

∮

Ci+1(yi+1)

. . .

∮

Cn (yn )

βi (x1, . . . , xn) · ∇Hi (xi )

|∇Hi (xi )|

×µ1
y1

(dx1) × · · · µi−1
yi−1

(dxi−1)	(dxi )µ
i+1
yi+1

(dxi+1) · · ·µn
yn

(dxn). (6.4)

If a point yi = (l, H ) approaches a vertex Oik ∈ �i along the edge Iil (that
is, H → Hik = Hi (Oik)), we have:

β i (y1, . . . , yn) = πil (y1, . . . , Oik, . . . , yn) + o(1)

Ti (yi )
. (6.5)

So, if the edge Iil ∼ Oik consists of points (l, H ) with H ≥ Hik , and a point
y ∈ � with yi ∈ Iil is close to a point of the binding with the i-th coordinate being
Oik , and πil (y1, . . . , Oik, . . . , yn) is positive, the vector β( y) is directed towards
the page corresponding to edge Iil ⊆ �i (away from the binding); if πil is negative,
β( y) is directed from the page towards the binding. If H ≤ Hik for (l, H ) ∈ Iil ,
the directions are opposite.

If not all coefficients πils ( y) are 0, then at least one of them is such that
the vector β( y) is directed towards the page γ ils corresponding to the edge Iils ,
and it turns out that there is a solution of the equation (6.1) with initial condition
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Y
0
(t0) = y lying strictly inside this page for some time interval (t0, t1) (there can

be two such pages, but not three, because one of the coefficients πils ( y) is equal
to the sum of two others).

So, if the process Y
0
(t) reaches, at time t = t0 < ∞, a point y of the binding

with yi being an internal vertex of �i , and y j , j �= i , not being vertices of the
corresponding graphs, and there is exactly one edge Iils ⊂ �i such that πils ( y) is
non-zero and β( y) is directed towards the page γ ils corresponding to this edge,
the process goes after the time t0, without any delay, to this page. If there are two
such edges, say, Iil1 and Iil2 , the process goes, without any delay, either to the page
γ il1 corresponding to the edge Iil1 , with probability

Pil1 ( y) = |πi ;l1 ( y)|
|πi ;l1 ( y)| + |πi ;l2 ( y)| , (6.6)

or to that corresponding to Iil2 , with probability

Pil2 ( y) = |πi ;l2 ( y)|
|πi ;l1 ( y)| + |πi ;l2 ( y)| ; (6.7)

and this independently from what happened before the time t0. Note that (6.5),
(6.6) can also be rewritten as |πi ;l1 ( y)|/|πi ;l3 ( y)|, |πi ;l2 ( y)|/|πi ;l3 ( y)|.

Let us introduce the set

E = { y = (y1, . . . , yn) ∈ � : yi is a vertex Oik of �i , and πi ;kl( y) = 0

for at least one edge Iil ∼ Oik, or yi = Oik, y j = O jr for some i �= j}.
The Markov process Y

0
(t) is determined by the above description before it

reaches the exceptional set E. We can define it after this time too, say, letting it
stop at reaching E; but anyway we are not going to make any statement about

Y
0
(t) after reaching this set.

Theorem 2. Suppose that for some T > 0 and some y ∈ � the process Y
0
(t)

does not reach the exceptional set E with any positive probability for t ≤ T .

Then the distribution of the random function Y
�
(t), 0 ≤ t ≤ T , with starting point

Y
�
(0) = y in the space of continuous functions on the interval [0, T ] converges

weakly as � ↓ 0 to that of Y
0
(t), 0 ≤ t ≤ T .

To prove this theorem, we can check that

(i) the family of the distributions of Y
�
(t), 0 ≤ t ≤ T , is tight in weak topol-

ogy;
(ii) if {Y�m (t), m = 1, 2, 3, . . .}, �

m → 0 is a sequence of processes whose
distributions converge weakly, then the limiting process coincides with

Y
0
(t).
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The tightness takes no more effort than the same for the family of the processes
Y ε,�(t), and we skip the proof.

The property (ii) can be checked as follows. First, outside a δ-neighborhood
Bδ , δ > 0, of the binding the coefficients β( y) are Lipschitz continuous; taking
this into account, we prove that Y

�
(t) converges in probability as � ↓ 0 to the

solution Y
0
(t) of (6.1) with the same initial condition, uniformly on the time

interval [0, T ∧ min{t : Y
0
(t) ∈ Bδ}].

Second: Suppose the pages γ il1 , γ il2 , γ il3 are attached to the binding near

the point y0 at which the process Y
0
(t) touches the binding from the page γ il3 ;

and suppose that the point y0 does not belong to the exceptional set E. Let τ�
δ =

min{t : Y
�
(t) /∈ Bδ}. Then the expectation of τ�

δ for the process Y
�
(t) starting at

the points y ∈ B that are close to y0 can be estimated: it is bounded by Aδ| ln δ|,
where A is a constant that does not depend on the parameter �.

Third: Let y0 /∈ E, y0i = Oik , be such that there are two edges Iil1 , Iil2 with
πil1 ( y0), πil2 ( y0) such that the vector β( y) is directed towards the pages γ il1 , γ il2

for y in these pages being close to y0. Then for every positive γ we can find
δ0 > 0 so small that for every δ ∈ (0, δ0) there exists a positive �0 such that for
0 < � < �0 for y ∈ B at a distance less than δ0 from y0

|P
�

y

{
Y

�(
τ�

δ

) ∈ γ ils

}− Pils ( y0)| < γ, s = 1, 2,

P
�

y

{
Y

�(
τ�

δ

) ∈ γ il3

}
< γ.

The last two statements are obtained from Lemmas 2.2 and 2.3 of Ref. 2
using the (sub)martingale technique.

Theorems 1 and 2 together yield the following

Theorem 3. Let the conditions imposed on the Hamiltonians Hi and on β(x) in
Proposition 4.1 be satisfied; and let a point x ∈ R

2n be such that for a positive T

the process Y
0
(t) with Y

0
(0) = Y(x) does not reach the exceptional set E with

any positive probability for 0 ≤ t ≤ T .
Then the slow component Y ε,�(t) of the process Xε,�(t) converges weakly

to Y
0
(t) in the space of continuous functions on [0, T ] with values in � as, first,

ε ↓ 0 and then � ↓ 0.

7. EXAMPLE

Consider a system of two weakly coupled oscillators which, after an appro-
priate time change, has the form

q̇ε,�
1 = 1

ε
pε,�

1 , ṗε,�
1 = −1

ε
V1
(
qε,�

1

)− pε,�
1 + �Ẇ1,
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q̇ε,�
2 = 1

ε
pε,�

2 , ṗε,�
2 = −1

ε
V2
(
qε,�

2

)− α
(
qε,�

1

)
pε,�

2 + �Ẇ2, (7.1)

where W1, W2 are independent Wiener processes. We assume that α(q) > 0,
V1(q) has two local minima, and V2 has just one minimum. The Hamiltonians

Hi (q, p) = p2

2 + Vi (q) as well as the corresponding phase pictures and the graphs
�i , i = 1, 2, are shown in Fig. 1.

The open book � = �1 × �2 is shown in Fig. 2. It consists of three pages γ l =
I1l × �2, l = 1, 2, 3, and the binding B = ({O11, O12, O13} × �2) ∪ (�1 × {O21}).
The only part of the binding that is accessible for the process Y ε,� or for the limiting
process (and so the only one that we have to take into account) is {O12} × �2.

The coordinates on � are (l1, H1; l2, H2); since �2 consists of just one edge,
l2 is always the same and can be omitted.

For y = (l, H ) ∈ �i not being a vertex, let Si (y) denote the area of the region
in R

2 bounded by the curve Ci (y) corresponding to this point (here i = 1, 2). For
a fixed edge Il ⊆ �i , Si (y) is in a one-to-one correspondence with H = Hi (y).
Note that the function S1(y) has different limits as y approaches the interior vertex
O12 along different edges: the limits along I11 and I12 are the areas S1, S2 of the
regions G1, G2 (see Fig. 1c); that along the edge I13 is equal to S1 + S2.

Let us find the double limit Y
0
(t) of the slow component Y ε,�(t) of the process

described by the system (7.1) as first ε ↓ 0 and then � ↓ 0.

Fig. 1.
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Fig. 2.

Applying formula (6.4), we find, for y1 being not a vertex:

β1(y1, y2) = T1(y1)−1
∮

C1(y1)

(0,−p) · ∇H1(x)

|∇H1(x)| 	(dx),

where p is the second coordinate of a point x = (q, p) ∈ R
2. The contour integral

here is equal to the double integral of the divergence of the vector field (0,−p)
over the region enclosed by C1(y1), i.e. to −S1(y1) = −S1(l1, H1). The integral
(2.1) defining T1(y1) is equal to d S1(l1,H1)

d H1
; so the differential equation governing

the first coordinate Y
0
1(t) = (l

0
1(t), H

0
1(t)) of the limiting process Y

0
(t) while it is

within the same page (l
0
1(t) = const) is

˙
H

0
1 = − S1

(
l
0
1, H

0
1

)

S′
1

(
l
0
1, H

0
1

) . (7.2)

Similarly, for y2 not being a vertex of �2,

β2(y1, y2) = β2(y1, 1, H2) = −α(y1) · S2(1, H2)

S′
2(1, H2)

,

where

α(y1) = T1(y1)−1
∮

C1(y1)

α(q)

|∇H1(x)| 	(dx);
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and

˙
H

0
2 = −α

(
Y

0
1

) · S2
(
1, H

0
2

)

S′
2

(
1, H

0
1

) . (7.3)

Solving the differential equation (7.2), we obtain:

S1
(
Y

0
1(t)

) = S1
(
Y

0
1(0)

)
e−t , (7.4)

this formula holding as long as Y
0
1(t) is in the same page as the initial value

Y
0
1(0). For the initial point Y (0) in the pages γ 1 and γ 2 (i.e., for Y

0
1(0) ∈ �11

or �12), this holds for all t ∈ [0,∞); for Y (0) ∈ γ 3, formula (7.4) holds for

0 ≤ t ≤ t0 = ln S1(Y
0
1(0))

S1+S2
. After this time, Y

0
(t) goes to one of the pages γ l , l = 1,

2, and for t > t0 we have:

S1
(
Y

0
1(t)

) = Sle
−(t−t0). (7.5)

Since within one edge we have a one-to-one correspondence between S1(y) =
S1(l, H ) and y (or H ), formulas (7.4), (7.5) allow us to find Y

0
1(t) = (l

0
1(t), H

0
1(t))

if we know to which of the pages γ 1, γ 2 the process Y
0
(t) turns after the time t0.

Solving the equation (7.3), we get:

S2
(
Y

0
2(t)

) = S2
(
1, H

0
2(t)

) = S2
(
Y

0
2(0)

) · exp
{
−
∫ t

0
α
(
Y

0
1(s)

)
ds
}
, (7.6)

which allows us to find Y
0
2(t) = (1, H

0
2(t)) (again, if we know to which of the

pages γ 1, γ 2 the process turns after the time t0).

As for the probabilities with which the process Y
0
(t) starting in the page γ 3

turns to γ 1 or γ 2, formula (6.3) yields: π11(O12, y2) = −S1, π13(O12, y2) = −S2,
π12(O12, y2) = −S1 − S2, so the probabilities are P1 = S1

S1+S2
, P2 = S2

S1+S2
(these

probabilities do not depend on the second coordinate y2 of the point at which Y
0
(t)

reaches the binding).
Equalities (7.4), (7.5), (7.6) together with the probabilities P1, P2 describe

the limiting slow motion on the open book � for the coupled system (7.1)—see
Fig. 2.
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